This function annotates a feature table based on exact mass
match. It requires a structural library, its metadata, and lists of adducts,
clusters, and neutral losses to be considered. The polarity has to be pos
or neg
and retention time and mass tolerances should be given. The feature
table is expected to be pre-formatted.
Usage
annotate_masses(
features = get_params(step = "annotate_masses")$files$features$prepared,
output_annotations = get_params(step =
"annotate_masses")$files$annotations$prepared$structural$ms1,
output_edges = get_params(step = "annotate_masses")$files$networks$spectral$edges$raw,
name_source = get_params(step = "annotate_masses")$names$source,
name_target = get_params(step = "annotate_masses")$names$target,
library = get_params(step = "annotate_masses")$files$libraries$sop$merged$keys,
str_stereo = get_params(step =
"annotate_masses")$files$libraries$sop$merged$structures$stereo,
str_met = get_params(step =
"annotate_masses")$files$libraries$sop$merged$structures$metadata,
str_nam = get_params(step =
"annotate_masses")$files$libraries$sop$merged$structures$names,
str_tax_cla = get_params(step =
"annotate_masses")$files$libraries$sop$merged$structures$taxonomies$cla,
str_tax_npc = get_params(step =
"annotate_masses")$files$libraries$sop$merged$structures$taxonomies$npc,
adducts_list = get_params(step = "annotate_masses")$ms$adducts,
clusters_list = get_params(step = "annotate_masses")$ms$clusters,
neutral_losses_list = get_params(step = "annotate_masses")$ms$neutral_losses,
ms_mode = get_params(step = "annotate_masses")$ms$polarity,
tolerance_ppm = get_params(step = "annotate_masses")$ms$tolerances$mass$ppm$ms1,
tolerance_rt = get_params(step = "annotate_masses")$ms$tolerances$rt$adducts
)
Arguments
- features
Table containing your previous annotation to complement
- output_annotations
Output for mass based structural annotations
- output_edges
Output for mass based edges
- name_source
Name of the source features column
- name_target
Name of the target features column
- library
Library containing the keys
- str_stereo
File containing structures stereo
- str_met
File containing structures metadata
- str_nam
File containing structures names
- str_tax_cla
File containing Classyfire taxonomy
- str_tax_npc
File containing NPClassifier taxonomy
- adducts_list
List of adducts to be used
- clusters_list
List of clusters to be used
- neutral_losses_list
List of neutral losses to be used
- ms_mode
Ionization mode. Must be 'pos' or 'neg'
- tolerance_ppm
Tolerance to perform annotation. Should be <= 20 ppm
- tolerance_rt
Tolerance to group adducts. Should be <= 0.05 minutes
Examples
if (FALSE) { # \dontrun{
tima:::copy_backbone()
go_to_cache()
github <- "https://raw.githubusercontent.com/"
repo <- "taxonomicallyinformedannotation/tima-example-files/main/"
data_interim <- "data/interim/"
dir <- paste0(github, repo)
dir <- paste0(dir, data_interim)
annotate_masses(
features = paste0(dir, "features/example_features.tsv"),
library = paste0(dir, "libraries/sop/merged/keys.tsv"),
str_stereo = paste0(dir, "libraries/sop/merged/structures/stereo.tsv"),
str_met = paste0(dir, "libraries/sop/merged/structures/metadata.tsv"),
str_nam = paste0(dir, "libraries/sop/merged/structures/names.tsv"),
str_tax_cla = paste0(dir, "libraries/sop/merged/structures/taxonomies/classyfire.tsv"),
str_tax_npc = paste0(dir, "libraries/sop/merged/structures/taxonomies/npc.tsv")
)
unlink("data", recursive = TRUE)
} # }