library("tima")
copy_backbone()
go_to_cache()
get_file(
url = get_default_paths()$urls$examples$features,
export = get_params(step = "prepare_features_tables")$files$features$raw
)
prepare_features_tables()
unlink("data", recursive = TRUE)Prepare features table
Description
This function prepares LC-MS feature tables by standardizing column names, filtering to top intensity samples per feature, and formatting data for downstream analysis. Supports multiple input formats (MZmine, SLAW, SIRIUS).
Usage
prepare_features_tables(
features = get_params(step = "prepare_features_tables")\$files\$features\$raw,
output = get_params(step = "prepare_features_tables")\$files\$features\$prepared,
candidates = get_params(step = "prepare_features_tables")\$annotations\$canidates\$samples,
name_adduct = get_params(step = "prepare_features_tables")\$names\$adduct,
name_features = get_params(step = "prepare_features_tables")\$names\$features,
name_rt = get_params(step = "prepare_features_tables")\$names\$rt\$features,
name_mz = get_params(step = "prepare_features_tables")\$names\$precursor
)
Arguments
features
|
Character string path to raw features file |
output
|
Character string path where prepared features should be saved |
candidates
|
Integer number of top-intensity samples to retain per feature (recommended: ≤5 to reduce data size while keeping representative samples) |
name_adduct
|
Character string name of the adduct column in input |
name_features
|
Character string name of the feature ID column in input |
name_rt
|
Character string name of the retention time column in input |
name_mz
|
Character string name of the m/z column in input |
Value
Character string path to the prepared feature table