library("tima")
copy_backbone()
go_to_cache()
get_file(
url = get_default_paths()$urls$examples$features,
export = get_params(step = "prepare_features_tables")$files$features$raw
)
prepare_features_tables()
unlink("data", recursive = TRUE)Prepare features table
Description
Prepares LC-MS feature tables by standardizing column names, filtering to top-intensity samples per feature, and formatting for downstream analysis. Supports multiple formats (MZmine, SLAW, SIRIUS).
Usage
prepare_features_tables(
features = get_params(step = "prepare_features_tables")\$files\$features\$raw,
output = get_params(step = "prepare_features_tables")\$files\$features\$prepared,
candidates = get_params(step = "prepare_features_tables")\$annotations\$canidates\$samples,
name_adduct = get_params(step = "prepare_features_tables")\$names\$adduct,
name_features = get_params(step = "prepare_features_tables")\$names\$features,
name_rt = get_params(step = "prepare_features_tables")\$names\$rt\$features,
name_mz = get_params(step = "prepare_features_tables")\$names\$precursor
)
Arguments
features
|
character(1) Path to raw features file (CSV/TSV). |
output
|
character(1) Path where prepared features should be saved. |
candidates
|
integer(1) Number of top-intensity samples to retain per feature (default: from params; recommended ≤5 to balance data size and coverage). |
name_adduct
|
character(1) Name of the adduct column in input. |
name_features
|
character(1) Name of the feature ID column in input. |
name_rt
|
character(1) Name of the retention time column in input. |
name_mz
|
character(1) Name of the m/z column in input. |
Value
character(1) Path to the prepared feature table (invisibly).